In vitro mutation artifacts after formalin fixation and error prone translesion synthesis during PCR
نویسندگان
چکیده
BACKGROUND: Clinical specimens are routinely fixed in 10% buffered formalin and paraffin embedded. Although DNA is commonly extracted from fixed tissues and amplified by PCR, the effects of formalin fixation are relatively unknown. Formalin fixation is known to impair PCR, presumably through damage that blocks polymerase elongation, but an insidious possibility is error prone translesion synthesis across sites of damage, producing in vitro artifactual mutations during PCR. METHODS: To better understand the consequences of fixation, DNA specimens extracted from fresh or fixed tissues were amplified with Taq DNA polymerase, and their PCR products were cloned and sequenced. RESULTS: Significantly more (3- to 4-fold) mutations were observed with fixed DNA specimens. The majority of mutations were transitions, predominantly at A:T base pairs, randomly distributed along the template. CONCLUSIONS: Formalin fixation appears to cause random base damage, which can be bridged during PCR by Taq DNA polymerase through error prone translesion synthesis. Fixed DNA is a damaged but "readable" template.
منابع مشابه
Translesion synthesis of acetylaminofluorene-dG adducts by DNA polymerase zeta is stimulated by yeast Rev1 protein.
Translesion synthesis is an important mechanism in response to unrepaired DNA lesions during replication. The DNA polymerase zeta (Polzeta) mutagenesis pathway is a major error-prone translesion synthesis mechanism requiring Polzeta and Rev1. In addition to its dCMP transferase, a non-catalytic function of Rev1 is suspected in cellular response to certain types of DNA lesions. However, it is no...
متن کاملMammalian translesion DNA synthesis across an acrolein-derived deoxyguanosine adduct. Participation of DNA polymerase eta in error-prone synthesis in human cells.
alpha-OH-PdG, an acrolein-derived deoxyguanosine adduct, inhibits DNA synthesis and miscodes significantly in human cells. To probe the cellular mechanism underlying the error-free and error-prone translesion DNA syntheses, in vitro primer extension experiments using purified DNA polymerases and site-specific alpha-OH-PdG were conducted. The results suggest the involvement of pol eta in the cel...
متن کاملError-prone lesion bypass by human DNA polymerase eta.
DNA lesion bypass is an important cellular response to genomic damage during replication. Human DNA polymerase eta (Pol(eta)), encoded by the Xeroderma pigmentosum variant (XPV) gene, is known for its activity of error-free translesion synthesis opposite a TT cis-syn cyclobutane dimer. Using purified human Pol(eta), we have examined bypass activities of this polymerase opposite several other DN...
متن کاملDNA Polymerase ζ-Dependent Lesion Bypass in Saccharomyces cerevisiae Is Accompanied by Error-Prone Copying of Long Stretches of Adjacent DNA
Translesion synthesis (TLS) helps cells to accomplish chromosomal replication in the presence of unrepaired DNA lesions. In eukaryotes, the bypass of most lesions involves a nucleotide insertion opposite the lesion by either a replicative or a specialized DNA polymerase, followed by extension of the resulting distorted primer terminus by DNA polymerase ζ (Polζ). The subsequent events leading to...
متن کاملThe role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts.
Cisplatin, a widely used chemotherapeutic agent, has been implicated in the induction of secondary tumors in cancer patients. This drug is presumed to be mutagenic because of error-prone translesion synthesis of cisplatin adducts in DNA. Oxaliplatin is effective in cisplatin-resistant tumors, but its mutagenicity in humans has not been reported. The polymerases involved in bypass of cisplatin a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Clinical Pathology
دوره 4 شماره
صفحات -
تاریخ انتشار 2004